World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Fractals in Unconventional Reservoirs — Part II; ArticleOpen Access

EFFECT OF FRACTAL FRACTURES ON PERMEABILITY IN THREE-DIMENSIONAL DIGITAL ROCKS

    https://doi.org/10.1142/S0218348X19400152Cited by:9 (Source: Crossref)
    This article is part of the issue:

    The fracture has great impact on the flow behavior in fractured reservoirs. Fracture traces are usually self-similar and scale-independent, which makes the fractal theory become a powerful tool to characterize fracture. To obtain three-dimensional (3D) digital rocks reflecting the properties of fractured reservoirs, we first generate discrete fracture networks by stochastic modeling based on the fractal theory. These fracture networks are then added to the existing digital rocks of rock matrixes. We combine two low-permeable cores as rock matrixes with a group of discrete fracture networks with fractal characteristics. Various types of fractured digital rocks are obtained by adjusting different fracture parameters. Pore network models are extracted from the 3D fractured digital rock. Then the permeability is predicted by Darcy law to investigate the impacts of fracture properties to the absolute permeability. The permeability of fractured rock is subject to exponential increases with fracture aperture. The relationship between the permeability and the fractal dimension of fracture centers is exponential, as well as the relationship between permeability and the fractal dimension of fracture lengths.