World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPLEXITY-BASED CLASSIFICATION OF THE CORONAVIRUS GENOME VERSUS GENOMES OF THE HUMAN IMMUNODEFICIENCY VIRUS (HIV) AND DENGUE VIRUS

    https://doi.org/10.1142/S0218348X20501297Cited by:28 (Source: Crossref)

    Coronavirus disease (COVID-19) is a pandemic disease that has affected almost all around the world. The most crucial step in the treatment of patients with COVID-19 is to investigate about the coronavirus itself. In this research, for the first time, we analyze the complex structure of the coronavirus genome and compare it with the other two dangerous viruses, namely, dengue and HIV. For this purpose, we employ fractal theory, sample entropy, and approximate entropy to analyze the genome walk of coronavirus, dengue virus, and HIV. Based on the obtained results, the genome walk of coronavirus has greater complexity than the other two deadly viruses. The result of statistical analysis also showed the significant difference between the complexity of genome walks in case of all complexity measures. The result of this analysis opens new doors to scientists to consider the complexity of a virus genome as an index to investigate its danger for human life.