Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE ROLE OF D-SUMMABLE INFORMATION DIMENSION IN DIFFERENTIATING COVID-19 DISEASE

    https://doi.org/10.1142/S0218348X21502558Cited by:5 (Source: Crossref)

    The current COVID-19 pandemic mainly affects the upper respiratory tract. People with COVID-19 report a wide range of symptoms, some of which are similar to those of common flu, such as sore throat and rhinorrhea. Additionally, COVID-19 shares many clinical symptoms with severe pneumonia, including fever, fatigue, dry cough, and respiratory distress. Several diagnostic strategies, such as the real-time polymerase chain reaction technique and computed tomography imaging, which are more costly than chest radiography, are employed as diagnostic tools. The purpose of this paper is to describe the role of the d-summable information dimension of X-ray images in differentiating several lesions and lung illnesses better than both fractal and information dimensions. The statistical analysis shows that the d-summable information dimension model better describes the information obtained from the X-ray images. Therefore, it is a more precise measure of complexity than the information and box-counting dimension. The results also show that the X-ray images of COVID-19 pneumonia reveal greater damage than those of tuberculosis, pneumonia, and various lung lesions, where the damage is minor or much focused. Because the d-summable information dimension increases as the image complexity decreases, it could pave the way to formulate a new measure to quantify the lung damage and assist the clinical diagnosis based on the area under the d-summable information model. In addition, the physical meaning of the ν parameter in the d-summable information dimension is given.