World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE EFFECT OF NOISE AND NONLINEAR NOISE REDUCTION METHODS ON THE FRACTAL DIMENSION OF CHAOTIC TIME SERIES

    https://doi.org/10.1142/S0218348X21502595Cited by:11 (Source: Crossref)

    The fractal dimension (FD) of a signal is a useful measure for characterizing its complexity. The real signals are contaminated with noise, which leads to reduced efficiency of the fractal analysis. This paper investigates the effect of noise on the FD computation and the compares the fractal dimensions obtained from noise-reduced signals. To this aim, the FD of different continuous and discrete chaotic time series is computed in the case of noise-free and noisy signals, using Katz, Higuchi, and Leibovich and Toth algorithms. Also for further investigations, the result of Lyapunov and Hurst analysis is presented. It is observed that in the continuous-time systems, the fractal dimensions obtained from all algorithms have significant changes in the presence of noise. While for the discrete-time signals, the Katz and the Higuchi dimensions have more robustness to noise. Furthermore, the Lyapunov exponent is decreased, and the Hurst exponent is increased. Then, the noisy signals are filtered with four nonlinear noise-reduction methods. The fractal dimensions are calculated from each denoised signal, and the performances of the noise-reduction methods are compared. The results show that the Katz and the Higuchi methods have less percentage change in calculating the dimension of original and filtered signals than the Leibovich and Toth method. The analysis is also done on the real heart rate signals to expand the results to real processes.