World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXPLAINABILITY OF NEURAL NETWORK CLUSTERING IN INTERPRETING THE COVID-19 EMERGENCY DATA

    https://doi.org/10.1142/S0218348X22401223Cited by:29 (Source: Crossref)
    This article is part of the issue:

    Among other hospitalization causes and cases, the clinical emergency is a critical case and the data of the reporting patients are biased as well as poorly managed due to the chaotic situation. The world has faced chaos over the past year due to the frequent waves of COVID-19 and the resulting emergencies. The data banks, linked with the clinical emergencies require serious quantitative and qualitative analysis to drive interpretable conclusions for necessary future emergency measures and to develop explainable artificial intelligence tools. This important procedure involves the clear understanding of the data patterns and topologies, which is a great challenge for the multidimensional data sets. Mathematically, the topological mapping can resolve this problem by mapping higher-dimensional data to two-dimensional representation, based on the overall association. Proper data mining and pattern recognition can help in improving the rapid patients admission, in providing the medical resources timely and in proper patient administration. In this paper, the importance of self-organizing maps, to interpret the hospital data, particularly for the COVID-19 epidemic is discussed in detail. Important variables are identified with the aid of networks and mappings.