Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANALYSIS OF A NONLINEAR DYNAMICAL MODEL OF HEPATITIS B DISEASE

    https://doi.org/10.1142/S0218348X22401272Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Mathematical epidemiology holds prime importance for comprehending the dynamics of infectious diseases. Consequently, mathematical model of hepatitis B with fractional-order derivative under Caputo sense is primarily focused in this research. The analysis of the required solution is qualitatively derived by applying the fixed-point theory approach. By perturbing the proposed model, the Ulam–Hyer’s stability techniques are further derived. To achieve the iterative series solution of the proposed system of hepatitis, the modified Euler method like Taylor’s series method is utilized. For validation and importance of the fractional operators, sufficient significant numerical results at various fractional orders are presented and compared them with the integer order. It is inferred from this research that, by using the fractional-order method, the transmission mechanism of hepatitis B disease can be acutely revealed. This study may provide positive theoretical support for the prevention and treatment of hepatitis B disease.