Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SOLITARY WAVES OF THE FRACTAL REGULARIZED LONG-WAVE EQUATION TRAVELING ALONG AN UNSMOOTH BOUNDARY

    https://doi.org/10.1142/S0218348X22500086Cited by:23 (Source: Crossref)

    The unsmooth boundary has a great influence on the solitary wave form of a nonlinear wave equation. It this work, we for the first time ever propose the fractal regularized long-wave equation which can describe the shallow water waves under the unsmooth boundary (such as the fractal seabed). The fractal variational principle is established and is proved to have a strong minimum condition by the He–Weierstrass theorem. Then, the solitary wave solution is obtained by the fractal variational method which can reduce the order of differential equation and obtain the optimal solution by the stationary condition. Finally, the impact of the unsmooth boundary on the solitary wave is presented. It shows that the fractal order can affect the wave morphology, but cannot affect its peak value. The finding in this paper is important for the coast protection and expected to bring a light to the study of the fractal theoretical basis in the geosciences.