World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FRACTIONAL-ORDER SINE-GORDON EQUATION INVOLVING NONSINGULAR DERIVATIVE

    https://doi.org/10.1142/S0218348X23400078Cited by:7 (Source: Crossref)
    This article is part of the issue:

    The sine-Gordon equation has received attention since 1970s due to the existence of soliton solutions. The aforesaid equation has significant applications in the quantum field theory. The aforementioned problem has been treated by using various numerical and analytical techniques under the ordinary as well as fractional-order derivatives. The mentioned equation has been investigated under the usual Caputo fractional-order derivative. Since in some cases the nonsingular-type derivatives produce more significant results in the mathematical modelings of real-world nonlinear problems, therefore, the proposed problem is considered in this paper under the fractional-order case in the context of Atangana–Baleanu–Caputo (ABC) derivative for the analytical and approximate results. This fractional derivative has some useful properties involving Mittag-Leffler-type kernel that is nonlocal and nonsingular. Furthermore, Modified Homotopy Perturbation Method (MHPM) is utilized for the required approximate solution. We give appropriate examples depicting the sine-Gordon model. Also, we present our results for the approximate solution graphically to support all the results.