Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CAPUTO TIME FRACTIONAL MODEL BASED ON GENERALIZED FOURIER’S AND FICK’S LAWS FOR BRINKMAN-TYPE FLUID: EXACT SOLUTION VIA INTEGRAL TRANSFORM

    https://doi.org/10.1142/S0218348X23401631Cited by:7 (Source: Crossref)
    This article is part of the issue:

    This paper proposes a new method for the development of the Caputo time fractional model. The method relies on generalized Fourier’s and Fick’ laws to describe the flow behavior of Brinkman-type fluids. An analysis of the free convection flow through a channel is carried out using a new transformation method. This transformation affects fluid energy and concentration equations. The specific governing equations are solved using a Laplace transform and Fourier sine transform. We obtain the solutions of the governing partial differential equations (PDEs) in terms of the Mittag–Leffler function. Mathematical software has been used for both graphical and numerical computation in order to examine the effects of embedded parameters. From graphical and tabular analysis, fractional-order solution provides more than one layer for fluid behavior, thermal, and concentration distribution in the channel. Experimentalists and engineers can choose from many best-fitted layers to compare their data and results. A deviation in the velocity profile’s behavior is also seen for larger values of the Brinkman parameter.