World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANALYTIC SOLUTION OF ONE-DIMENSIONAL FRACTIONAL GLYCOLYSIS MODEL

    https://doi.org/10.1142/S0218348X23402016Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Glycolysis, which occurs in the cytoplasm of both prokaryotic and eukaryotic cells, is regarded to be the primary step employed in the breakdown of glucose to extract energy. As it is utilized by all living things on the planet, it was likely one of the first metabolic routes to emerge. It is a cytoplasmic mechanism that converts glucose into carbon molecules while also producing energy. The enzyme hexokinase aids in the phosphorylation of glucose. Hexokinase is inhibited by this mechanism, which generates glucose-6-P from adenosine triphosphate (ATP). This paper’s primary goal is to quantitatively examine the general reaction–diffusion Glycolysis system. Since the Glycolysis model shows a positive result as the unknown variables represent chemical substance concentration, therefore, to evaluate the behavior of the model for the non-integral order derivative of both independent variables, we expanded the concept of the conventional order Glycolysis model to the fractional Glycolysis model. The nonlinearity of the model is decomposed through an Adomian polynomial for evaluation. More precisely, we used the iterative Laplace Adomian decomposition method (LADM) to determine the numerical solution for the underlying model. The model’s necessary analytical/numerical solution was found by adding the first few iterations. Finally, we have presented numerical examples and graphical representations to explain the dynamics of the considered model to ensure the scheme’s validity.