Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A HIGHER-ORDER APPROACH FOR TIME-FRACTIONAL GENERALIZED BURGERS’ EQUATION

    https://doi.org/10.1142/S0218348X23500676Cited by:1 (Source: Crossref)

    A fast higher-order scheme is established for solving inhomogeneous time-fractional generalized Burgers’ equation. The time-fractional operator is taken as the modified operator with the Mittag-Leffler kernel. Through stability analysis, it has been demonstrated that the proposed numerical approach is unconditionally stable. The convergence of the numerical method is analyzed theoretically using von Neumann’s method. It has been proved that the proposed numerical method is fourth-order convergent in space and second-order convergent in time in the L2-norm. The scheme’s proficiency and effectiveness are examined through two numerical experiments to validate the theoretical estimates. The tabular and graphical representations of numerical results confirm the high accuracy and versatility of the scheme.