World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INVESTIGATING THE RELATIONSHIP BETWEEN PORE CHARACTERISTICS, FRACTAL DIMENSION, AND PERMEABILITY OF LIMESTONE USING HIGH-PRESSURE MERCURY INTRUSION, SEM ANALYSIS, AND BP NEURAL NETWORK

    https://doi.org/10.1142/S0218348X24500737Cited by:1 (Source: Crossref)

    In this study, limestone samples from a coal mine in the North China region were selected for analysis. High Pressure Mercury Intrusion (HPMI) and Scanning Electron Microscopy (SEM) experiments were conducted to explore the impact of pore characteristics and fractal dimension of limestone on permeability. Additionally, regression analysis and a Backpropagation Neural Network (BPNN) were employed to predict permeability. The results of this study reveal that the pore-throat distribution of the limestone samples is non-uniform, indicating significant heterogeneity. The difference of pressure curve morphology affects the permeability. Utilizing multivariate regression analysis, a relationship was established between permeability and parameters such as mean radius, porosity, and fractal dimension. Furthermore, the BP neural network was effectively employed to predict permeability values, with small discrepancies between predicted and measured values. This study establishes a link between microstructural attributes and macroscopic permeability providing a robust theoretical foundation for permeability assessment and engineering applications pertaining to limestone.