World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DYNAMICAL BEHAVIORS OF A FRACTIONAL-ORDER PREDATOR–PREY MODEL: INSIGHTS INTO MULTIPLE PREDATORS COMPETING FOR A SINGLE PREY

    https://doi.org/10.1142/S0218348X25400778Cited by:0 (Source: Crossref)

    In this paper, we investigate the dynamical behaviors of a modified Bazykin-type two predator-one prey model involving the intra-specific and inter-specific competition among predators. A Caputo fractional-order derivative is utilized to include the influence of the memory on the constructed mathematical model. The mathematical validity is ensured by showing the model always has a unique, non-negative and bounded solution. Four kinds of equilibria are well identified which represent the condition when all populations are extinct, both two predators are extinct, only the first predator is extinct, only the second predator is extinct, and all populations are extinct. The Matignon condition is given to identify the dynamics around equilibrium points. The Lyapunov direct method, the Lyapunov function, and the generalized LaSalle invariant principle are also provided to show the global stability condition of the model. To explore the dynamics of the model more deeply, we utilize the predictor–corrector numerical scheme. Numerically, we find the forward bifurcation and the bistability conditions by showing the bifurcation diagram, phase portraits, and the time series. The biological interpretation of the analytical and numerical results is described explicitly when an interesting phenomenon occurs.