World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXACT SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM WALKS

    https://doi.org/10.1142/S0218348X95000163Cited by:81 (Source: Crossref)

    Fractal time random walks with generalized Mittag-Leffler functions as waiting time densities are studied. This class of fractal time processes is characterized by a dynamical critical exponent 0<ω≤1, and is equivalently described by a fractional master equation with time derivative of noninteger order ω. Exact Greens functions corresponding to fractional diffusion are obtained using Mellin transform techniques. The Greens functions are expressible in terms of general H-functions. For ω<1 they are singular at the origin and exhibit a stretched Gaussian form at infinity. Changing the order ω interpolates smoothly between ordinary diffusion ω=1 and completely localized behavior in the ω→0 limit.

    Remember to check out the Most Cited Articles!

    Check out New & Notable Titles in Nonlinear Science
    Includes authors Leon O Chua, Bruce J West and more

    "