A MULTIFRACTAL ANALYSIS OF IFSP INVARIANT MEASURES WITH APPLICATION TO FRACTAL IMAGE GENERATION
Abstract
In this paper, we focus on invariant measures arising from Iterated Function System with Probabilities (IFSP). We show the equivalence between an IFSP and a linear dynamical system driven by a white noise. Then, we use a multifractal analysis to obtain scaling properties of the resulting invariant measures, working within the framework of dynamical systems. Finally, as an application to fractal image generation, we show how this analysis can be used to obtain the most efficient choice for the probabilities to render the attractor of an IFS by applying the probabilistic algorithm known as “chaos game”.