World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTEGRAL EQUATION COUPLED MODE APPROACH APPLIED TO INTERNAL WAVE PROBLEMS

    https://doi.org/10.1142/S0218396X01000449Cited by:7 (Source: Crossref)

    A two-way coupled mode approach based on an integral equation formalism is applied to sound propagation through internal wave fields defined at the 1999 Shallow Water Acoustics Modeling Workshop. Solutions of the coupled equations are obtained using a powerful approach originally introduced in nuclear theory and also used to solve simple nonseparable problems in underwater acoustics. The basic integral equations are slightly modified to permit a Lanczos expansion to form a solution. The solution of the original set of integral equations is then easily recovered from the solution of the modified equations. Two important aspects of the integral equation method are revealed. First, the Lanczos expansion converges faster than a Born expansion of the original integral equations. Second, even when the Born expansion diverges due to strong mode coupling, the Lanczos expansion converges. It is shown that the internal wave problems examined are essentially one-way propagation problems because one observes good agreement between the coupled mode solutions and those provided by an energy-conserving parabolic equation algorithm. In the Workshop examples, at both 25 and 250 Hz, significantly greater coupling between modes occurs in the linear internal wave field case than the nonlinear soliton case.