World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES

    https://doi.org/10.1142/S0218396X01000796Cited by:89 (Source: Crossref)

    We apply a spectral element method based upon a conforming mesh of quadrangles and triangles to the problem of 2-D elastic wave propagation. The method retains the advantages of classical spectral element methods based upon quadrangles only. It makes use of the classical Gauss–Lobatto–Legendre formulation on the quadrangles, while discretization on the triangles is based upon interpolation at the Fekete points. We obtain a global diagonal mass matrix which allows us to keep the explicit structure of classical spectral element solvers. We demonstrate the accuracy and efficiency of the method by comparing results obtained for pure quadrangle meshes with those obtained using mixed quadrangle-triangle and triangle-only meshes.

    Presented at ICTCA'99, the 4th International Conference on Theoretical and Computational Acoustics, May 1999, Trieste, Italy.