World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DISTRIBUTED PARALLEL PROCESSING TECHNIQUES FOR ADAPTIVE SONAR BEAMFORMING

    https://doi.org/10.1142/S0218396X02000511Cited by:10 (Source: Crossref)

    Quiet submarine threats and high clutter in the littoral environment increase computation and communication demands on beamforming arrays, particularly for applications that require in-array autonomous operation. By coupling each transducer node in a distributed array with a microprocessor, and networking them together, embedded parallel processing for adaptive beamformers can glean advantages in execution speed, fault tolerance, scalability, power, and cost. In this paper, a novel set of techniques for the parallelization of adaptive beamforming algorithms is introduced for in-array sonar signal processing. A narrowband, unconstrained, Minimum Variance Distortionless Response (MVDR) beamformer is used as a baseline to investigate the efficiency and effectiveness of this method in an experimental fashion. Performance results are also included, among them execution times, parallel efficiencies, and memory requirements, using a distributed system testbed comprised of a cluster of workstations connected by a conventional network.