World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A FINITE ELEMENT METHOD FOR THE PARABOLIC EQUATION IN AEROACOUSTICS COUPLED WITH A NONLOCAL BOUNDARY CONDITION FOR AN INHOMOGENEOUS ATMOSPHERE

    https://doi.org/10.1142/S0218396X05002864Cited by:5 (Source: Crossref)

    The standard parabolic equation is used to simulate the far-field, low-frequency sound propagation over ground with mild range-varying topography. The atmosphere has a lower layer with a general, variable index of refraction. An unbounded upper layer with a squared refractive index varying linearly with height is considered and modeled by the nonlocal boundary condition of Dawson, Brooke and Thomson.1 A finite element/transformation of coordinates method is used to transform the initial-boundary value problem to one with a rectangular computational domain and then discretize it. The solution is marched in range by the Crank–Nicolson scheme. A discrete form of the nonlocal boundary condition, which is left unaffected by the transformation of coordinates, is employed in the finite element method. The fidelity of the overall method is shown in the numerical simulations performed for various cases of sound propagation in an inhomogeneous atmosphere over a ground with irregular topography.