World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HIGH-ORDER ACCURATE NUMERICAL SCHEMES FOR THE PARABOLIC EQUATION

    https://doi.org/10.1142/S0218396X05002888Cited by:5 (Source: Crossref)

    Efficient, high-order accurate methods for the numerical solution of the standard (narrow-angle) parabolic equation for underwater sound propagation are developed. Explicit and implicit numerical schemes, which are second- or higher-order accurate in time-like marching and fourth-order accurate in the space-like direction are presented. The explicit schemes have severe stability limitations and some of the proposed high-order accurate implicit methods were found conditionally stable. The efficiency and accuracy of various numerical methods are evaluated for Cartesian-type meshes. The standard parabolic equation is transformed to body fitted curvilinear coordinates. An unconditionally stable, implicit finite-difference scheme is used for numerical solutions in complex domains with deformed meshes. Simple boundary conditions are used and the accuracy of the numerical solutions is evaluated by comparing with an exact solution. Numerical solutions in complex domains obtained with a finite element method show excellent agreement with results obtained with the proposed finite difference methods.