HIGH-ORDER RADIATION BOUNDARY CONDITIONS FOR STRATIFIED MEDIA AND CURVILINEAR COORDINATES
Abstract
Optimized local radiation boundary conditions to truncate the computational domain by a rectangular boundary have been constructed for acoustic waves propagating into a homogeneous, isotropic far field. Here we try to achieve comparable efficiencies in stratified media and cylindrical coordinates. We find that conditions constructed for homogeneous media are highly effective in the stratified case. On the circle we derive boundary conditions by optimizing a semidiscretized perfectly matched layer. Though we are unsuccessful in matching the accuracies of the Cartesian case, our experiments show that older sequences based on the progressive wave expansion are surprisingly efficient.