World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Advanced Computational Methods for Wave Motion in Complex Media; Guest Editors: Dan Givoli and Géza SerianiNo Access

NUMERICAL AND ULTRASONIC EXPERIMENTAL SIMULATIONS OF ELASTIC WAVE PROPAGATION AROUND HOLLOW CYLINDER

    https://doi.org/10.1142/S0218396X12400085Cited by:2 (Source: Crossref)

    A laser-ultrasonic experimental setup was used to study, at a reduced scale, the wave propagation inside and around fluid-filled wells. Simulations tools were also developed and calibrated from comparisons with experimental signals. These tools serve as a connection to realistic scale. A semi-analytical approach, the discrete wave number method was first used to compute signals in a simplified geometrical configuration. This method is fast enough to be used in the identification of the main parameters that describe at best the experimental signals. Then a finite difference scheme was implemented in order to describe accurately the actual well. The two methods describe the attenuation mechanisms by using the Kelvin–Voigt model for the solid and the Maxwell model for the fluid. Comparisons between numerical and experimental waveforms, obtained in the two fundamental elastic configurations: the fast and the slow formations, show very good agreement in arrival times, waveforms and relative amplitudes. This satisfactory result provides insights useful for the recognition and interpretation of wave propagation in complex media. Such is the case of modern sonic-logging technology.