World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ACTIVE CONTROL OF A MACHINE SUSPENSION SYSTEM SUPPORTED ON A CYLINDRICAL SHELL

    https://doi.org/10.1142/S0218396X13500124Cited by:0 (Source: Crossref)

    A numerical study on the active control of a machine suspension system supported on a cylindrical shell aiming to reduce the sound radiation is presented in this paper. In this system, a rigid-body machine is supported on a simply-supported elastic cylindrical shell through four active isolators. A theoretical model is employed and four types of active control strategies including kinetic energy minimization strategy, power flow minimization strategy, squared acceleration minimization strategy and acoustic power minimization strategy are considered, with corresponding active control force obtained by linear quadratic optimal method. Numerical simulations are conducted and detailed results were presented. Active control performance under these four control strategies is compared and analyzed in terms of radiated sound power, and the effect of the number of active actuators is discussed by numerical analysis. The results show that acoustic power minimization strategy has the best performance to reduce the sound power radiated from supporting shell in general. Through numerical simulations, some comprehensive design principles of active control system are discussed at the end.