World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Invited Papers from the 12th International Conference on Theoretical and Computational Acoustics (ICTCA 2015); Guest Editor: Yuefeng SunNo Access

Improving Porosity–Velocity Relationships Using Carbonate Pore Types

    https://doi.org/10.1142/S0218396X15400068Cited by:7 (Source: Crossref)

    Acoustic impedance in carbonates is influenced by factors such as porosity, pore structure/fracture, fluid content, and lithology. Occurrence of moldic and vuggy pores, fractures and other pore structures due to diagenesis in carbonate rocks can greatly complicate the relationships between impedance and porosity. Using a frame flexibility factor (γ) derived from a poroelastic model to characterize pore structure in reservoir rocks, we find that its product with porosity can result in a much better correlation with sonic velocity (Vp = ABϕγ) and acoustic impedance (AI = CDϕγ), where A, B, C and D is 6.60, 0.03, 18.3 and 0.09, respectively for the deep low-porosity carbonate reservoir studied in this paper. These new relationships can also be useful in improving seismic inversion of ultra-deep hydrocarbon reservoirs in other similar environments.