World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Normal Mode Analysis of Three-Dimensional Propagation Over a Small-Slope Cosine Shaped Hill

    https://doi.org/10.1142/S0218396X15500058Cited by:13 (Source: Crossref)

    Three-dimensional propagation over an infinitely long cosine shaped hill is examined using an approximate normal mode/parabolic equation hybrid model that includes mode coupling in the out-going direction. The slope of the hill is relatively shallow, but it is significant enough to produce both mode-coupling and horizontal refraction effects. In the first part of the paper, the modeling approach is described, and the solution is compared to results obtained with a finite element method to evaluate the accuracy of the solution in light of assumptions made in formulating the model. Then the calculated transmission loss is interpreted in terms of a modal decomposition of the field, and the solution from the hybrid model is compared to adiabatic and N × 2D solutions to assess the relative importance of horizontal refraction and mode-coupling effects. An analysis using a horizontal ray trace is presented to explain differences in the modal interference pattern observed between the 3D and N × 2D solutions. The detailed discussion provides a thorough explanation of the observed 3D propagation effects and demonstrates the usefulness of the approximate normal mode/parabolic equation hybrid model as a tool to understand measured transmission loss in complex environments.