World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LEARNING RETRIEVAL EXPERT COMBINATIONS WITH GENETIC ALGORITHMS

    https://doi.org/10.1142/S0218488503001965Cited by:8 (Source: Crossref)

    The goal of information retrieval (IR) is to provide models and systems that help users to identify the relevant documents to their information needs. Extensive research has been carried out to develop retrieval methods that solve this goal. These IR techniques range from purely syntax-based, considering only frequencies of words, to more semantics-aware approaches. However, it seems clear that there is no single method that works equally well on all collections and for all queries. Prior work suggests that combining the evidence from multiple retrieval experts can achieve significant improvements in retrieval effectiveness. A common problem of expert combination approaches is the selection of both the experts to be combined and the combination function. In most studies the experts are selected from a rather small set of candidates using some heuristics. Thus, only a reduced number of possible combinations is considered and other possibly better solutions are left out. In this paper we propose the use of genetic algorithms to find a suboptimal combination of experts for a document collection at hand. Our approach automatically determines both the experts to be combined and the parameters of the combination function. Because we learn this combination for each specific document collection, this approach allows us to automatically adjust the IR system to specific user needs. To learn retrieval strategies that generalize well on new queries we propose a fitness function that is based on the statistical significance of the average precision obtained on a set of training queries. We test and evaluate the approach on four classical text collections. The results show that the learned combination strategies perform better than any of the individual methods and that genetic algorithms provide a viable method to learn expert combinations. The experiments also evaluate the use of a semantic indexing approach, the context vector model, in combination with classical word matching techniques.