World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FUZZY ARITHMETIC BASED ON DIMENSION-ADAPTIVE SPARSE GRIDS: A CASE STUDY OF A LARGE-SCALE FINITE ELEMENT MODEL UNDER UNCERTAIN PARAMETERS

    https://doi.org/10.1142/S0218488506004199Cited by:12 (Source: Crossref)

    Fuzzy arithmetic provides a powerful tool to introduce uncertainty into mathematical models. With Zadeh's extension principle, one can obtain a fuzzy-valued extension of any real-valued objective function. An efficient and accurate approach to computing expensive multivariate functions of fuzzy numbers is given by fuzzy arithmetic based on sparse grids. In many cases, not all uncertain input parameters carry equal weight, or the objective model exhibits separable structure. These characteristics can be exploited by dimension-adaptive algorithms. As a result, the treatment of even higher-dimensional problems becomes possible. This is demonstrated in this paper by a case study involving two large-scale finite element models in vibration engineering that are subjected to fuzzy-valued input data.