World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Soft Computing Methods in Artificial IntelligenceNo Access

HOW TO GROUP ATTRIBUTES IN MULTIVARIATE MICROAGGREGATION

    https://doi.org/10.1142/S0218488508005285Cited by:17 (Source: Crossref)

    Microaggregation is one of the most employed microdata protection methods. It builds clusters of at least k original records, and then replaces these records with the centroid of the cluster. When the number of attributes of the dataset is large, one usually splits the dataset into smaller blocks of attributes, and then applies microaggregation to each block, successively and independently. In this way, the effect of the noise introduced by microaggregation is reduced, at the cost of losing the k-anonymity property.

    In this work we show that, besides the specific microaggregation method, the value of the parameter k and the number of blocks in which the dataset is split, there exists another factor which influences the quality of the microaggregation: the way in which the attributes are grouped to form the blocks. When correlated attributes are grouped in the same block, the statistical utility of the protected dataset is higher. In contrast, when correlated attributes are dispersed into different blocks, the achieved anonymity is higher, and so, the disclosure risk is lower. We present quantitative evaluations of such statements based on different experiments on real datasets.