World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTI-ATTRIBUTE DECISION MAKING BASED ON LABEL SEMANTICS

    https://doi.org/10.1142/S0218488508005492Cited by:10 (Source: Crossref)

    We propose label semantics as an integrated representation framework for probabilistic uncertainty and fuzziness in multiple-attribute decision making problems. Linguistic attribute hierarchies are then introduced as a means of modelling the complex and often imprecise functional relationships between low-level attributes or measurements and high-level decision or classification variables. Within this framework we introduce linguistic decision trees as a tool for information aggregation in multi-attribute decision problems and describe the process of information propagation through a hierarchy of linked decision trees. In addition, we consider the ranking of different alternatives or examples based on their linguistic descriptions of a high-level utility variable. Finally, we discuss how linguistic decision trees embedded in attribute hierarchies can be learnt from data.