World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INDEPENDENCE IN COMPLETE AND INCOMPLETE CAUSAL NETWORKS UNDER MAXIMUM ENTROPY

    https://doi.org/10.1142/S0218488508005571Cited by:1 (Source: Crossref)

    In an expert system having a consistent set of linear constraints it is known that the Method of Tribus may be used to determine a probability distribution which exhibits maximised entropy. The method is extended here to include independence constraints (Accommodation).

    The paper proceeds to discusses this extension, and its limitations, then goes on to advance a technique for determining a small set of independencies which can be added to the linear constraints required in a particular representation of an expert system called a causal network, so that the Maximum Entropy and Causal Networks methodologies give matching distributions (Emulation). This technique may also be applied in cases where no initial independencies are given and the linear constraints are incomplete, in order to provide an optimal ME fill-in for the missing information.