World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PRIVACY RISK ASSESSMENT WITH BOUNDS DEDUCED FROM BOUNDS

    https://doi.org/10.1142/S0218488511007180Cited by:1 (Source: Crossref)

    As more and more organizations collect, store, and release large amounts of personal information, it is increasingly important for the organizations to conduct privacy risk assessment so as to comply with various emerging privacy laws and meet information providers' demands. Existing statistical database security and inference control solutions may not be appropriate for protecting privacy in many new uses of data as these methods tend to be either less or over-restrictive in disclosure limitation or are prohibitively complex in practice. We address a fundamental question in privacy risk assessment which asks: how to accurately derive bounds for protected information from inaccurate released information or, more particularly, from bounds of released information. We give an explicit formula for calculating such bounds from bounds, which we call square bounds or S-bounds. Classic F-bounds in statistics become a special case of S-bounds when all released bounds retrograde to exact values. We propose a recursive algorithm to extend our S-bounds results from two dimensions to high dimensions. To assess privacy risk for a protected database of personal information given some bounds of released information, we define typical privacy disclosure measures. For each type of disclosure, we investigate the distribution patterns of privacy breaches as well as effective and efficient controls that can be used to eliminate privacy risk, both based on our S-bounds results.