World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Rough Set Theory and Fuzzy Logic Based Warehousing of Heterogeneous Clinical Databases

    https://doi.org/10.1142/S0218488517500167Cited by:6 (Source: Crossref)

    Large amounts of data about the patients with their medical conditions are presented in the Medical databases. Analyzing all these databases is one of the difficult tasks in the medical environment. In order to warehouse all these databases and to analyze the patient’s condition, we need an efficient data mining technique. In this paper, an efficient data mining technique for warehousing clinical databases using Rough Set Theory (RST) and Fuzzy Logic is proposed. Our proposed methodology contains two phases – (i) Clustering and (ii) Classification. In the first phase, Rough Set Theory is used for clustering. Clustering is one of the data mining techniques for warehousing the heterogeneous data bases. Clustering technique is used to group data that have similar characteristics in the same cluster and also to group the data that have dissimilar characteristics with other clusters. After clustering the data, similar objects will be clustered in one cluster and the dissimilar objects will be clustered under another cluster. The RST can be reduced the complexity. Then in the second phase, these clusters are classified using Fuzzy Logic. Normally, Classification with Fuzzy Logic is generated more number of rules. Since the RST is utilized in our work, the classification using Fuzzy can be done with less amount of complexity. The proposed approach is evaluated using various clinical related databases from heart disease datasets – Cleveland, Switzerland and Hungarian. The performance analysis is based on Sensitivity, Specificity and Accuracy with different cluster numbers. The experimentation results show that our proposed methodology provides better accuracy result.

    Remember to check out the Most Cited Articles!

    Check out our titles on Fuzzy Logic & Z-Numbers
    With a wide range of areas, you're bound to find something you like.