World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Fuzzy Goal Programming Approach for Solving Multi-Objective Supply Chain Network Problems with Pareto-Distributed Random Variables

    https://doi.org/10.1142/S0218488519500259Cited by:14 (Source: Crossref)

    Uncertainty is unavoidable and addressing the same is inevitable. That everything is available at our doorstep is due to a well-managed modern global supply chain, which takes place despite its efficiency and effectiveness being threatened by various sources of uncertainty originating from the demand side, supply side, manufacturing process, and planning and control systems. This paper addresses the demand- and supply-rooted uncertainty. In order to cope with uncertainty within the constrained multi-objective supply chain network, this paper develops a fuzzy goal programming methodology, with solution procedures. The probabilistic fuzzy goal multi-objective supply chain network (PFG-MOSCN) problem is thus formulated and then solved by three different approaches, namely, simple additive goal programming approach, weighted goal programming approach, and pre-emptive goal programming approach, to obtain the optimal solution. The proposed work links fuzziness in transportation cost and delivery time with randomness in demand and supply parameters. The results may prove to be important for operational managers in manufacturing units, interested in optimizing transportation costs and delivery time, and implicitly, in optimizing profits. A numerical example is provided to illustrate the proposed model.