World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Beyond Deep Learning: An Econometric Example

    https://doi.org/10.1142/S0218488520400036Cited by:1 (Source: Crossref)
    This article is part of the issue:

    In the past, in many areas, the best prediction models were linear and nonlinear parametric models. In the last decade, in many application areas, deep learning has shown to lead to more accurate predictions than the parametric models. Deep learning-based predictions are reasonably accurate, but not perfect. How can we achieve better accuracy? To achieve this objective, we propose to combine neural networks with parametric model: namely, to train neural networks not on the original data, but on the differences between the actual data and the predictions of the parametric model. On the example of predicting currency exchange rate, we show that this idea indeed leads to more accurate predictions.