World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Estimating and Controlling Overlap in Gaussian Mixtures for Clustering Methods Evaluation

    https://doi.org/10.1142/S0218488520500087Cited by:1 (Source: Crossref)

    The ad hoc nature of the clustering methods makes simulated data paramount in assessing the performance of clustering methods. Real datasets could be used in the evaluation of clustering methods with the major drawback of missing the assessment of many test scenarios. In this paper, we propose a formal quantification of component overlap. This quantification is derived from a set of theorems which allow us to derive an automatic method for artificial data generation. We also derive a method to estimate parameters of existing models and to evaluate the results of other approaches. Automatic estimation of the overlap rate can also be used as an unsupervised learning approach in data mining to determine the parameters of mixture models from actual observations.