POSSIBILISTIC SONAR DATA MODELING FOR MOBILE ROBOTS
Abstract
Sonar sensors are widely used in mobile robots applications such as navigation, map building, and localization. The performance of these sensors is affected by the environmental phenomena, sensor design, and target characteristics. Therefore, the readings obtained from these sensors are uncertain. This uncertainity is often modeled by using Probability Theory. However, the probablistic approach is valid when the available knowledge is precise which is not the case in sonar readings. In this paper, the behavior of sonar readings reflected from walls and corners are studied, then new models of angular uncertainty and radial imprecision for sonar readings obtained from corners and walls are proposed. These models are represented by using Possibility Theory, mainly possibility distributions.