World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Adaptive EM Algorithm for the Maximum Likelihood Estimation of Non-Homogeneous Poisson Process Software Reliability Growth Models

    https://doi.org/10.1142/S0218539317500206Cited by:7 (Source: Crossref)

    Non-homogeneous Poisson process (NHPP) software reliability growth models (SRGMa) enable quantitative metrics to guide decisions during the software engineering life cycle, including test resource allocation and release planning. However, many SRGM possess complex mathematical forms that make them difficult to apply. Specifically, traditional procedures solve a system of nonlinear equations to identify the numerical parameters that best characterize failure data. Recently, researchers have developed expectation-maximization (EM) algorithms for NHPP SRGM that exhibit better convergence properties and can therefore find maximum likelihood estimates with greater ease.

    This paper presents an adaptive EM (AEM) algorithm, which combines an earlier EM algorithm for NHPP SRGM with unconstrained search of the model parameter space. Our performance analysis shows that the AEM outperforms state-of-the-art EM algorithms for NHPP SRGM with very strong statistical significance, which is as much as hundreds of times faster on some data sets. Thus, the approach can fit SRGM very quickly. We also incorporate this high performance adaptive EM algorithm into a heuristic nested model selection procedure to objectively select a model of least complexity that best characterizes the failure data. Results indicate this heuristic approach often identifies the model possessing the best model selection criteria.

    a Acronyms are not pluralized.