World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Crashworthiness Analysis of Bio-Inspired Fractal Plant Stems Multi-Cell Circular Tubes

    https://doi.org/10.1142/S0219455425500919Cited by:2 (Source: Crossref)

    A novel structure resembling plant stems, termed bio-inspired fractal plant stems multi-cellular circular tubes (BFPMC), was developed by incorporating fractal plant stem characteristics into smaller circular tubes within larger ones. The crashworthiness of this structure under axial impact was investigated using a validated LS-DYNA finite element model. The energy absorption performance of BFPMC tubes, varying in the number of branches, fractal orders, and inner circular diameters, was numerically studied. The numerical findings reveal a 19.27% increase in specific energy absorption (SEA) for BFPMC with Di=30mm compared to Di=0mm, indicating that filling a single circular tube can enhance the structure’s impact resistance. Subsequently, structural parameters conducive to excellent energy absorption characteristics were determined for various combinations of a number of branches, fractal order, and inner circle diameter parameters. These results offer valuable insights for designing multi-cellular double tubes with high energy absorption efficiency.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures