World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Modeling Systems with Dependent Catastrophic and Degradation Failures Incorporating Uncertainty

    https://doi.org/10.1142/S0218539324500347Cited by:0 (Source: Crossref)

    This research examines the interval-valued availability and cost of a competing-risk system with dependent catastrophic and degradation failures incorporating uncertainty. Uncertainty indicates that the probability of the successful operation of the system is not precisely known. The considered system has three states: normal, degraded, and totally failed. While degradation failures lessen the system’s overall effectiveness and lead it to a degraded state, a catastrophic failure abruptly terminates the system’s operations and results in a totally failed state. The interrelationship between these two failures is illustrated by the fact that each degradation failure elevates the possibility of a catastrophic failure. To identify a failure, sequential inspections are performed on the system. If the system is found to be degraded, a minimal repair is executed. If a catastrophic failure is detected, a corrective repair is performed. By integrating the aforesaid points, a theorem describing the upper and lower limits of the model’s reliability is derived. Furthermore, some theorems defining the bounds of point availability, long-run availability, and the average long-run cost rate are established. A numerical example of an aluminum electrolytic capacitor is taken to demonstrate the results.

    AMSC: 60Gxx