World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPARISON OF SAMPLING TECHNIQUES FOR A PARAMETRIC YIELD OPTIMIZATION ALGORITHM

    https://doi.org/10.1142/S0218539399000176Cited by:0 (Source: Crossref)

    Tolerances in component values will affect a product manufacturing yield. The yield can be maximized by selecting component nominal values judiciously. Several yield optimization routines have been developed. A simple algorithm known as the center of gravity (CoG) method makes use of a simple Monte Carlo sampling to estimate the yield and to generate a search direction for the optimal nominal values. This technique is known to be able to identify the region of high yield in a small number of iterations. The use of the importance sampling technique is investigated. The objective is to reduce the number of samples needed to reach the optimal region. A uniform distribution centered at the mean is studied as the importance sampling density. The results show that a savings of about 40% as compared to Monte Carlo sampling can be achieved using importance sampling when the starting yield is low. The importance sampling density also helped the search process to identify the high yield region quickly and the region identified is generally better than that of Monte Carlo sampling.