World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PHOTOCATALYTIC CONVERSION OF METHANE INTO METHANOL OVER THE MoO3(010) SURFACE USING A SIMULATION METHOD

    https://doi.org/10.1142/S0218625X04005871Cited by:1 (Source: Crossref)

    In this investigation, we have studied the kinetics and mechanism of photocatalytic conversion of methane into methanol reaction over the MoO3(010) surface using a computer simulation method. Methane and oxygen as the reactants are used at room temperature and atmospheric pressure under UV photoirradiation of the catalyst. According to our data analysis, the order of methanol formation reaction with respect to CH4 and O2 was determined to be l=0.30 and m=-1.03, respectively. The highest methanol formation rate (TOF) value was obtained at about 0.05 molecule/s.site in a range of 25–35 W/cm2 incident light intensity with energy hν≥Eg. The selectivity of CH3OH was increased with increasing partial pressure of CH4, while the selectivity of CHOH was decreased. The effect of light intensity on the CH3OH selectivity was also studied under different PCH4/PO2 ratios, namely 0.9, 1.5 and 2.6. The highest CH3OH selectivity was obtained at 1.5 ratio.