DENSIFICATION AND FERROELECTRIC PROPERTIES OF PZT(60/40) THICK FILMS FABRICATED BY SCREEN-PRINTING METHOD
Abstract
Ferroelectric PbZr0.6Ti0.4O3 (PZT) thick films were fabricated using a combination of screen-printing method and PZT precursor sol coating process (M. Koch, N. Harris, R. Maas, A. G. R. Evans, N. M. White and A. Brunnschweiler, Meas. Sci. Technol.8 (1997) 49; Y. S. Yoon, J. Korean. Phys. Soc.47 (2005) 321). Structural and electrical properties of the PZT thick films with the treatment of sol coating were investigated. The porosity decreased and the densification was enhanced with increasing the number of sol coatings. All PZT thick films showed the typical X-ray diffraction patterns of a perovskite polycrystalline structure. The thickness of all thick films was approximately 60–61 μm. The relative dielectric constant increased and dielectric loss decreased with increasing the number of sol coatings, and the values of the six-layer PZT-6 film were 167.8, 0.78% at 1 kHz, respectively. The remanent polarization and coercive field of the 6-coated PZT-6 thick films were 14.1 μC/cm2 and 20.3 kV/cm, respectively.