World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DC CONDUCTION MECHANISMS IN AlSnO2Al STRUCTURE DEPOSITED BY THERMAL EVAPORATION

    https://doi.org/10.1142/S0218625X08011251Cited by:0 (Source: Crossref)

    The DC conduction mechanisms in metal–insulator–metal sandwich structure based on amorphous thin films of SnO2 have been studied in the thickness range 100–400 nm, in the substrate temperature range 293–543 K, and in the annealing temperature range 473–773 K, and the results are discussed in terms of current theory. It is observed that at low field and low temperature the conduction mechanism is found to obey the hopping model, at higher temperature the conduction takes place by transport in the extended states but at high field the main barrier lowering effect is associated with localized centers. The increase in electrical conductivity with film thickness is caused by the oxygen vacancies and defects which generate carriers in the films. The increase in electrical conductivity due to an increase in substrate temperature is ascribed to the increasing concentration of ionized donors and hoping of electrons between metal ions in two different valence states. The formation of tin species of lower valence states and doubly ionized oxygen vacancies are thought to be responsible for the increase in electrical conductivity at higher annealing temperature.

    PACS: 73.40. Rw, 73.61. Jc, 73.50. –h