STUDY ON CLUSTER FORMATION OF POLY 2-HYDROXYETHYL METHACRYLATE FUNCTIONALIZED SINGLE-WALLED CARBON NANOTUBES
Abstract
Cluster-like network structures of single-walled carbon nanotubes (SWNTs) were synthesized by chemical grafting poly 2-hydroxyethyl methacrylate (polyHEMA) to the sidewalls of SWNTs. Acid chloride-functionalized tubes were coupled with commercially available HEMA monomer, which was in turn polymerized using a radical initiator. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to identify the surface changes on the nanocomposites. Microscopic observations of the nanotube complexes by field emission scanning electron microscopy (FE-SEM) show that the tubes were dispersed and formed cluster-like network, branched structures with less bundling, thus, strongly suggesting a firm coating of the polymer on nanotube walls. The coating was further confirmed by transmission electron microscopy. The thermal properties of the nanotube complex as studied by thermal gravimetric analysis (TGA) revealed that coating enhanced stability of the complex, when compared to that of bulk polyHEMA and pristine SWNTs. The nanotube complexes showed excellent suspension stability when dispersed in organic solvent.