World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SYNTHESIS, CRYSTAL STRUCTURE, SPECTROSCOPIC STUDIES AND AB-INITIO CALCULATIONS ON THIRD-ORDER OPTICAL NONLINEARITY OF A FIVE-COORDINATE CHLOROIRON(III) COMPLEX

    https://doi.org/10.1142/S0218863507003755Cited by:8 (Source: Crossref)

    A five-coordinate chloroiron(III) complex has been synthesized and characterized by X-ray diffraction analysis and UV-Vis spectroscopy. The maximum one-photon absorption (OPA) wavelengths recorded by both linear optical measurements and quantum mechanical computations using the configuration interaction (CI) method are estimated to be shorter than 400 nm in the UV region, showing good optical transparency to visible light. To investigate the microscopic third-order nonlinear optical (NLO) behavior of the title compound, we have computed both dispersion-free (static) and also frequency-dependent (dynamic) linear polarizabilities (α) and second hyperpolarizabilities (γ) at λ = 825–1125 nm and 1050–1600 nm wavelength areas using the time-dependent Hartree–Fock (TDHF) method. The ab-initio calculation results with non-zero values on (hyper)polarizabilities indicate that the synthesized molecule might possess microscopic third-order NLO phenomena.