SOLID SULFONIC ACID CATALYSTS BASED ON POROUS CARBONS AND CARBON–SILICA COMPOSITES
Abstract
Mesoporous carbons prepared using a templating method under different carbonization temperatures are sulfonated with concentrated H2SO4. Without the moving of silica template carbon–silica composites were prepared, which can maintain the pore structure well during sulfonation reaction process. The resultant samples are characterized using nitrogen adsorption, transmission electron microscope, field-emission scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, and elemental analysis techniques. The catalytic performances of the sulfonated carbons and composites are evaluated by esterification reaction of methanol with acetic acid. The results show that a low-temperature carbonization process is favorable for improving the reaction conversion of acetic acid. In addition, the sulfonated carbon–silica composites show a higher acetic acid conversion than the sulfonated mesoporous carbons.