World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHARACTERIZATION OF PERIODIC CYLINDRICAL SUBSURFACE DEFECTS BY PULSED FLASH THERMOGRAPHY

    https://doi.org/10.1142/S0218625X15500328Cited by:1 (Source: Crossref)

    A characterization of cylindrical periodic subsurface defects of different sizes by means of pulsed thermography is presented in the paper. To ensure a uniform thermal flux distribution, the test samples were heated in lab conditions using two photographic flashes. Surface temperature was intentionally recorded at an angle to the normal of the sample surface. Recorded temperatures were compared with simulated temperatures and the differences in temperature peak values and temperature peak positions were noted. The thermal image was transformed based on known positions of four noncollinear points, in order to cancel out errors resulting from image recording at an angle. The uniformity of surface heating and the effect of the positions of the defects on the results were tested by means of a simulation model. The positions did not affect defect characterization. It was also found that in spite of nonuniform heating, if the reference points were selected properly, the difference in temperature contrast was negligible.