World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MORPHOLOGY EFFECT OF Ni–Ag/CARBON NANOMATERIALS ON THEIR ELECTROCATALYTIC ACTIVITY FOR GLUCOSE OXIDATION

    https://doi.org/10.1142/S0218625X16500591Cited by:5 (Source: Crossref)

    We presented here three carbon-nanomaterials-based modified glassy carbon electrodes (GCE) with Ni–Ag nanohybrid nanoparticles (NPs) deposited upon, including single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs) and the mesoporous carbons (MPCs), and compared their morphology effects on both Ni–Ag deposition quality and electrocatalytic performances toward Glu oxidation. After being deposited with Ni–Ag NPs, a homogenous surface with very small Ni–Ag NPs was obtained for Ni–Ag/SWCNTs/GCE, while heterogeneous, coarse surfaces with obvious embedment with large Ni–Ag particles were observed for both Ni–Ag/MWCNTs/GCE and Ni–Ag/MPC/GCE. All three modified electrodes were well characterized in terms of surface morphology, electron transfer rate, hydrophilicity, interference resistance, stability, electrocatalytic behaviors as well as practicability in real samples, based on which Ni–Ag/SWCNTs/GCE was always proved to be more advantageous over other two composite electrodes. Such advantage of Ni–Ag/SWCNTs/GCE was attributed to its desirable surface morphology good for Ni–Ag deposition and exposure of as many active sites as possible to Glu oxidation, leading to the extraordinary electrocatalytic performance.