INFILTRATED SILICA PHOTONIC CRYSTAL WITH LIQUID CRYSTAL AND VARIOUS ORGANIC LIQUIDS
Abstract
Tunable photonic crystal has been developed by infiltration of nematic liquid crystal (NLC) and different organic liquids in the void of silica microspheres. Optical properties were investigated by ultraviolet–visible (UV–Vis) spectroscopy. It has been observed that the position of photonic band gap (PBG) shifts from 336nm to 326nm with the increase of applied field from 0V to 9V and 316nm to 324nm after the infiltration of the organic liquids. The refractive index of infiltrated liquid crystal (LC) is calculated at different applied electric field. The present results could be suited for implementation of low cost and compact design tunable devices with low power consumption for high density integrated optics.