CHLORINE GAS SENSING OF SnO2 NANOCLUSTERS AS A FUNCTION OF TEMPERATURE: A DFT STUDY
Abstract
Density functional theory combined with Gibbs free energy calculations is used to study the sensing behavior of tin dioxide (SnO2) clusters towards chlorine gas molecules. Studied SnO2 clusters’ results show the known property of tin dioxide being an oxygen-deficient semiconductor with the preferred stoichiometry SnO1.8. The kind of reactions that result in sensing Cl2 molecules is investigated. These include oxygen replacement, chlorine molecule dissociation and van der Waals attachment. Oxygen replacement shows an increase in energy gap which is the case experimentally. Optimum sensing operating temperature towards Cl2 molecules that results from the intersection of the highest SnO2 adsorption and desorption Gibbs free energy lines is at 275∘C in agreement with the experimentally measured temperature of 260∘C.